Comment on `Semiclassical dynamics of a spin- $1 / 2$ in an arbitrary magnetic field'

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 333523
(http://iopscience.iop.org/0305-4470/33/17/4n1)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.118
The article was downloaded on 02/06/2010 at 08:06

Please note that terms and conditions apply.

COMMENT

Comment on 'Semiclassical dynamics of a spin $-\frac{1}{2}$ in an arbitrary magnetic field'

E A Kochetov
Bogoliubov Theoretical Laboratory, Joint Institute for Nuclear Research, 141980 Dubna, Russia

Received 16 September 1999, in final form 2 February 2000

Abstract

In a recent paper Alscher and Grabert claim to prove that a dominant (tree-level) stationary phase approximation to the Wiener regularized continuum $s u(2)$ coherent-state path integral for the quantum propagator $\mathcal{P}:=\left\langle z_{F}\right| T \exp \left(-\mathrm{i} \int_{0}^{\tau} H \mathrm{~d} s\right)\left|z_{I}\right\rangle$ becomes exact, provided H is a linear combination of the $s u(2)$ generators with arbitrary time-dependent coefficients. I find the derivation of this in fact obvious result unduly complicated and somewhat obscure. The authors start from a classical spin action inconsistent with necessary boundary conditions and therefore are forced to invoke a nontrivial regularization of the action to render the latter meaningful. Alternatively, when a $s u(2)$ symplectic potential consistent with the boundary conditions is employed, no regularization is required to obtain the leading quasiclassical asymptotics.

The observation that the dominant (fluctuation-free) approximation to a path integral (PI) on a coherent-state manifold (a coadjoint orbit of a certain group G) for \mathcal{P} becomes exact, provided H belongs to a Lie algebra of G, is self-evident and follows from the fact that any element of the algebra (time dependent or not) can be brought by an appropriate G-rotation to the Cartan subalgebra. This has explicitly been demonstrated for the $s u(2)$ and $s u(1,1)$ coherent-state PIs in [1]. Recently [2], it has also been shown that a formal continuum PI representation yields a correct semiclassical propagator on a group orbit up to second (Gaussian fluctuation) term, provided a symplectic one-form consistent with boundary conditions is used. The same quasiclassical form of \mathcal{P} follows from a direct time-lattice evaluation of the $s u(2)$ coherentstate PI [3]. In this regard, the main result of the paper [4] as it stands can hardly be considered novel.

Let us now comment on its derivation as is given in [4]. The authors start from a continuum PI representation for \mathcal{P} (equation (13)) which, however, disagrees with boundary conditions imposed by fixing two points on a group orbit as the definition of \mathcal{P} implies. More specifically, the $S U(2)$ symplectic one-form that defines a classical dynamics of a free spin is taken in [4] to be \dagger

$$
\begin{equation*}
\theta=\frac{\mathrm{i}}{2} \frac{\bar{z} \mathrm{~d} z-z \mathrm{~d} \bar{z}}{1+|z|^{2}}=\left.\mathrm{i} s \frac{\bar{z} \mathrm{~d} z-z \mathrm{~d} \bar{z}}{1+|z|^{2}}\right|_{s=1 / 2} \tag{1}
\end{equation*}
$$

which contributes to the action

$$
S_{0}=\mathrm{i} \int \theta
$$

\dagger I use local complex coordinates on S^{2} which are more convenient than the real ones used in [4].
with boundary conditions

$$
\begin{equation*}
z(0)=z_{I} \quad \bar{z}(\tau)=\bar{z}_{F} \tag{2}
\end{equation*}
$$

being understood. The Hamiltonian action principle $\delta S_{0}=0$ should yield equations of motion

$$
\dot{z}=\dot{\bar{z}}=0
$$

accompanied by boundary conditions (2). But this is not the case if θ is given by (1), for nonvanishing boundary terms would emerge under variation of S_{0}. Therefore certain compensating terms are to be added to S_{0} to ensure the correct form of the equations of motion [5]. In our case, boundary conditions (2) define two different (holomorphic and antiholomorphic) Lagrangian surfaces. To be consistent with the boundary conditions, θ must vanish when restricted on those surfaces, which suggests that θ is to be taken in the form

$$
\begin{equation*}
\theta \rightarrow \theta\left(\bar{z}_{F}, z_{I}\right)=\theta+\text { is }\left(\frac{z_{I} \mathrm{~d} \bar{z}}{1+\bar{z} z_{I}}-\frac{\bar{z}_{F} \mathrm{~d} z}{1+\bar{z}_{F} z}\right) \tag{3}
\end{equation*}
$$

As is easily seen, equation $\delta \int \theta\left(\bar{z}_{F}, z_{I}\right)=0$ along with boundary conditions (2) results in correct equations of motion. In view of the fact that two different Lagrangian surfaces are involved, a specific discontinuity of the classical trajectories at the endpoints occurs. Note also that

$$
\mathrm{d} \theta=\mathrm{d} \theta\left(\bar{z}_{F}, z_{I}\right)=w^{(2)}:=-2 \mathrm{is} \frac{\mathrm{~d} z \wedge \mathrm{~d} \bar{z}}{\left(1+|z|^{2}\right)^{2}}
$$

where symplectic $S U(2)$-invariant two-form $w^{(2)}$ defines a Poisson (classical) action of the $S U(2)$ group on $C P^{1}$; quantization of the latter is possible whenever [$w^{(2)}$] defines an integral cohomology class, which amounts to the requirement $2 s \in N$.

It is natural to suggest that the basis (equation (13)) in [4] be replaced by
$\frac{\left\langle z_{F}\right| T \exp -\frac{\mathrm{i}}{\hbar} \int_{0}^{\tau} H(s) \mathrm{d} s\left|z_{I}\right\rangle}{\left\langle z_{F} \mid z_{I}\right\rangle}=\int_{z(0)=z_{I}}^{\bar{z}(\tau)=\bar{z}_{F}} \mathrm{D} \mu_{s u(2)}(z) \exp \left[\mathrm{i} \int \theta\left(\bar{z}_{F}, z_{I}\right)-\frac{\mathrm{i}}{\hbar} \int_{0}^{\tau} H^{c l} \mathrm{~d} s\right]$.

It is this representation that has been obtained in [1] for $s u(2)$ coherent-state PI and generalized in [2] for a coherent-state PI quantization of rank-one group orbits. As has been shown, equation (4) is reliable as long as the leading and next-to-leading asymptotics of the quasiclassical (in powers of $1 / s$) series for \mathcal{P} are considered.

In order to avoid a problem with the boundary conditions, Alscher and Grabert invoke a sort of regularization of the $s u(2) \mathrm{PI}$ which is originally due to Klauder [6]. In general, an appropriate regularization of the $s u(2)$ coherent-state PI is desirable, resulting in welldefined integrals over continuous paths. However, a classical action is meaningful without any regularization at all.

It is worth mentioning that the dominant stationary phase approximation to \mathcal{P} evaluated in [4] coincides with that evaluated starting from non-regularized PI (4) (see [1]). This occurs due to the fact that Alscher and Grabert have managed, by introducing a regularizationdependent time scale, to single out a specific set of the classical paths with jumps at the endpoints, which is necessary to obtain a correct result \dagger. Unfortunately, this trick can hardly be considered self-consistent, for the overspecification problem does not actually disappear (see equation (23)) in [4]).

[^0]Presumably, the approach advocated by Alscher and Grabert may be considered, provided a more accurate presentation is available, as an alternative way to evaluate the coherentstate quasiclassical propagator. It is likely that a properly regularized $s u(2)$ continuum PI based on representation (4) gives rise to a quasiclassical propagator that coincides within two leading terms with that evaluated from non-regularized PI (4), but deviates from the latter at higher orders. To explicitly carry out the necessary calculations, a recently proposed 'planar' regularization of the $s u(2)$ phase-space PI may turn out helpful [7].

References

[1] Kochetov E A 1995 J. Math. Phys. 364667
Kochetov E A 1995 J. Math. Phys. 361666
[2] Kochetov E A 1998 J. Phys. A: Math. Gen. 314473
[3] Solari H G 1987 J. Math. Phys. 261097
[4] Alscher A and Grabert H 1999 J. Phys. A: Math. Gen. 324907
[5] Berezin F A 1980 Sov. Phys.-Usp. 23763
[6] Klauder J R 1979 Phys. Rev. D 192349
Daubechies I and Klauder J R 1985 Phys. Rev. D 262239
[7] Bodmann B, Leschke H and Warzel S 1999 J. Math. Phys. 402549

[^0]: \dagger Note that the trajectories with a discontinuity at the endpoints are the only possible classical paths that naturally emerge in [1,2].

